Enter your search into one or more of the boxes below:
You can refine your search by selecting from any of the options below:
The Pinch Technique and its Applications to Non-Abelian Gauge Theories
Foyalty 261

The Pinch Technique and its Applications to Non-Abelian Gauge Theories (Hardback)

Usually despatched within 2 weeks.


Non-Abelian gauge theories, such as quantum chromodynamics (QCD) or electroweak theory, are best studied with the aid of Green's functions that are gauge-invariant off-shell, but unlike for the photon in quantum electrodynamics, conventional graphical constructions fail. The Pinch Technique provides a systematic framework for constructing such Green's functions, and has many useful applications. Beginning with elementary one-loop examples, this book goes on to extend the method to all orders, showing that the Pinch Technique is equivalent to calculations in the background field Feynman gauge. The Pinch Technique Schwinger-Dyson equations are derived, and used to show how a dynamical gluon mass arises in QCD. Applications are given to the center vortex picture of confinement, the gauge-invariant treatment of resonant amplitudes, the definition of non-Abelian effective charges, high-temperature effects, and even supersymmetry. This book is ideal for elementary particle theorists and graduate students.

Science & MathematicsPhysicsNuclear structure physicsScience & MathematicsPhysicsParticle & high-energy physicsScience & MathematicsPhysicsQuantum physics incl quantum mechanics & quantum field theory Publisher: Cambridge University Press Publication Date: 23/12/2010 ISBN-13: 9780521437523  Details: Type: Hardback Format: Books
Availability: Usually despatched within 2 weeks. Login for Quick Checkout Add to Basket

John M. Cornwall's main research interest is non-perturbative quantum chromodynamics, both in four dimensions and in three (with applications to the functional Schrodinger equation and to high temperatures). Many of these results depend heavily on the pinch technique, as described in The Pinch Technique and its Applications to Non-Abelian Gauge Theories. He has also worked fairly recently on the applications of non-Abelian gauge theories to the early universe, in primordial magnetic fields and baryon asymmetry. Earlier work was in dynamical symmetry breaking, the equivalence theorem and effective potentials for gauge theories. He has also worked in space physics, including the aurora and Earth's ring current. Joannis Papavassiliou is a Researcher in the Department of Theoretical Physics and IFIC, the University of Valencia-CSIC. A large part of his work has been devoted to the development of the Pinch Technique, both its formal foundation as well as many applications, and he has published several articles on quantum field theory and particle phenomenology. Daniele Binosi is a Researcher at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT) and Fondazione Bruno Kessler. In addition to his work extending the Pinch Technique and its applications, he leads several policy-related European projects developing the vision and sustainability of quantum information foundations and technologies.

More books by John M. Cornwall

More books by Joannis Papavassiliou

More books by Daniele Binosi

Leave Review


Delivery Options

All delivery times quoted are the average, and cannot be guaranteed. These should be added to the availability message time, to determine when the goods will arrive. During checkout we will give you a cumulative estimated date for delivery.

Location 1st Book Each additional book Average Delivery Time
UK Standard Delivery FREE FREE 3-5 Days
UK First Class £4.50 £1.00 1-2 Days
UK Courier £7.00 £1.00 1-2 Days
Western Europe** Courier £17.00 £3.00 2-3 Days
Western Europe** Airmail £5.00 £1.50 4-14 Days
USA / Canada Courier £20.00 £3.00 2-4 Days
USA / Canada Airmail £7.00 £3.00 4-14 Days
Rest of World Courier £22.50 £3.00 3-6 Days
Rest of World Airmail £8.00 £3.00 7-21 Days

** Includes Austria, Belgium, Denmark, France, Germany, Greece, Iceland, Irish Republic, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden and Switzerland.

Delivery Help & FAQs

Returns Information

If you are not completely satisfied with your purchase*, you may return it to us in its original condition with in 30 days of receiving your delivery or collection notification email for a refund. Except for damaged items or delivery issues the cost of return postage is borne by the buyer. Your statutory rights are not affected.

* For Exclusions and terms on damaged or delivery issues see Returns Help & FAQs

You might also like

Polarization Phenomena In Physics:...
Makoto Tanifuji
Basics Of Transport And Storage Of...
Holger Volzke; Frank Wille; Toshiari...
Resistive Gaseous Detectors: Designs,...
Marcello Abbrescia; Vladimir Peskov;...
© W&G Foyle Ltd
Foyles uses cookies to help ensure your experience on our site is the best possible. Click here if you’d like to find out more about the types of cookies we use.
Accept and Close