Enter your search into one or more of the boxes below:
You can refine your search by selecting from any of the options below:
MIPs and Their Roles in the Exchange of Metalloids
Foyalty 545

MIPs and Their Roles in the Exchange of Metalloids (Hardback)

Usually despatched within 2 weeks.


Sixteen years have passed since human aquaporin-1 (AQP1) was discovered as the first water channel, facilitating trans-membrane water fluxes. Subsequent years of research showed that the water channel AQP1 was only the tip of an iceberg; the iceberg itself being the ubiquitous super family of membrane intrinsic proteins (MIPs) that facilitate trans-membrane transport of water and an increasing number of small, water-soluble and uncharged compounds. Here we introduce you to the superfamily of MIPs and provide a summary about our gradually refined understanding of the phylogenetic relationship of its members. This volume is dedicated to the metalloids, a recently discovered group of substrates for a number of specific MIPs in a diverse spectrum of organisms. Particular focus is given to the essential boron, the beneficial silicon and the highly toxic arsenic. The respective MIP isoforms that facilitate the transport of these metalloids include members from several clades of the phylogenetic tree, suggesting that metalloid transport is an ancient function within this family of channel proteins. Among all the various substrates that have been shown to be transported by MIPs, metalloids take an outstanding position. While water transport seems to be a common function of many MIPs, single isoforms in plants have been identified as being crucially important for the uptake of boric acid as well as silicic acid. Here, the function seems not to be redundant, as mutations in those genes render plants deficient in boron and silicon, respectively.

Thomas P. Jahn is an Associate Professor and group leader at the Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen. He studied biology at the University of Bonn, Germany. From early on in his scientific career he was interested in transport processes in plants and the molecular mechanisms behind these processes. More recently his group contributed to the field of aquaporin research culminating in the identification of several new substrates for members of this superfamily of channel proteins. The overall scope of his current research focuses on the elucidation of networks comprising molecular components engaged in the responses to nutritional stresses, including elements of transport, assimilation, storage and stress signaling. Gerd P. Bienert is currently a Marie Curie Fellow at the Institute of Life Science at the Universite Catholique de Louvain in Louvain la Neuve, Belgium. His work focuses on the molecular characterisation of the intracellular trafficking and hetero-oligomerisation of aquaporins in plants. In 2008, he received his PhD in Molecular Plant Nutrition from the University of Copenhagen, Denmark. During his PhD, Gerd Patrick Bienert made significant advances in the scientific understanding on the substrate selectivity of plant aquaporins for uncharged solutes. The work resulted in the molecular identification of the first arsenite, antimonite and hydrogen peroxide channels in plants. Gerd P. Bienert studied biology at the Julius-Maximilians-University Wurzburg and at the Technical University Darmstadt, Germany. During his education he emphasized molecular plant physiology and biophysics, genetics and biotechnology. His main research interests focus on the molecular transmembrane transport processes involved in the uptake, translocation and extrusion of compounds that are relevant for plant physiology. In addition, intracellular regulation and trafficking of the transport proteins themselves are also contemplated. In his home region, Tauber-Franken, he began to develop his enthusiastic curiosity for biology by exploring and studying nature. He became fascinated by insects, especially the members of the order of hymenoptera to which he still devotes his free-time. The existing overlap between entomology and botany has aroused his interest in understanding the physiology of plants.

More books by Thomas Jahn

More books by Gerd P. Bienert

Leave Review


Delivery Options

All delivery times quoted are the average, and cannot be guaranteed. These should be added to the availability message time, to determine when the goods will arrive. During checkout we will give you a cumulative estimated date for delivery.

Location 1st Book Each additional book Average Delivery Time
UK Standard Delivery FREE FREE 3-5 Days
UK First Class £4.50 £1.00 1-2 Days
UK Courier £7.00 £1.00 1-2 Days
Western Europe** Courier £17.00 £3.00 2-3 Days
Western Europe** Airmail £5.00 £1.50 4-14 Days
USA / Canada Courier £20.00 £3.00 2-4 Days
USA / Canada Airmail £7.00 £3.00 4-14 Days
Rest of World Courier £22.50 £3.00 3-6 Days
Rest of World Airmail £8.00 £3.00 7-21 Days

** Includes Austria, Belgium, Denmark, France, Germany, Greece, Iceland, Irish Republic, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden and Switzerland.

Delivery Help & FAQs

Returns Information

If you are not completely satisfied with your purchase*, you may return it to us in its original condition with in 30 days of receiving your delivery or collection notification email for a refund. Except for damaged items or delivery issues the cost of return postage is borne by the buyer. Your statutory rights are not affected.

* For Exclusions and terms on damaged or delivery issues see Returns Help & FAQs

You might also like

Human Stem Cell Manual: A Laboratory...
Suzanne Peterson; Jeanne F. Loring
Biology and Ecology of Pharmaceutical...
Ramasamy Santhanam; Santhanam Ramesh;...
Progress in Medical Research
Mieczyslaw Pokorski
© W&G Foyle Ltd
Foyles uses cookies to help ensure your experience on our site is the best possible. Click here if you’d like to find out more about the types of cookies we use.
Accept and Close