Machine Learning

Machine Learning: An Algorithmic Perspective, Second Edition

Non-Fiction, Computing & Technology, Applications & Programming, Education
Hardback Published on: 08/10/2014
In stock
Usually dispatched within 2-3 working days
Make and edit your lists in your account
Check click & collect stock near you
Collect today: Pay in shop

Synopsis

A Proven, Hands-On Approach for Students without a Strong Statistical FoundationSince the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.New to the Second EditionTwo new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of contentRevision of the support vector machine material, including a simple implementation for experimentsNew material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptronAdditional discussions of the Kalman and particle filtersImproved code, including better use of naming conventions in PythonSuitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.

  • Publisher: Taylor & Francis Inc
  • ISBN: 9781466583283
  • Number of pages: 458
  • Weight: 1080g
  • Dimensions: 254 x 178 mm

Customer Reviews